
Growth functions



Summary

◆ Empirical versus biologically based growth functions

◆ Theoretical growth functions:

✓ Lundqvist-Korf type

✓ Richards type

✓ Hossfeld IV type

✓ Other growth functions

◆ (Zeide decomposition of growth functions)

◆ Formulating growth functions without age explicit

◆ Simultaneous modeling of several individuals

(Families of growth functions)

✓ Growth functions formulated as difference equations - ADA, (GADA

and mixed models)



Growth functions

◆ The selection of functions – growth functions - appropriate to

model tree and stand growth is an essencial stage in the

development of growth models

✓ Differencial form

✓ Integral form

( )= dttfy

( )tf
dt

dy
=



Growth functions

◆ Growth functions must have a shape that is in accordance

with the principles of biological growth:

✓ The curve is limited by yield 0 at the start (t=0 ou t=t0) and by

a maximum yield at an advanced age (existence of assymptote)

✓ the relative growth rate (variation of the x variable per unit of

time and unit of x) presents a maximum at a very early stage,

decreasing afterwards; in most cases, the maximum occurs

very early so that we can use decreasing functions to model

relative growth rate

✓ The slope of the curve increases in the initial stage and

decreases after a certain point in time (existence of an

inflexion point)



Growth functions

◆ Two types of functions have been used to model growth:

✓ Empirical growth functions

Relationship between the dependent variable – the one we want

to model – and the regressors according to some mathematical

function – e.g. linear, parabolic, without trying to identify the

causes or explaining the phenomenon

✓ Analitical or functional growth functions

Conceived in terms of the mechanism of the system, usually

having an underlying hypothesis associated with the cause or

function of the phenomenon described by the response variable

◆ The distinction between the two is not sharp and most modeling

applications contain both empiricism and mechanism in varying

mixtures



Theoretical growth functions

◆ Theoretical growth functions have commonly been developed in

their growth form – either absolute or relative growth – and the

respective yield form has been obtained by integration

◆ Generally this approach allows interpretation of the function

parameters and helps to impose restrictions on the values that the

parameters can take to be biologically consistent

◆ Theoretical growth functions are grouped according to their

functional form in:

✓ Lundqvist-Korf type

✓ Richards type

✓ Hossfeld IV type

✓ Other growth functions



Theoretical growth functions

Lundqvist-Korf type



Schumacher function

◆ Differential form:

✓ The model proposed by Schumacher is based on the hypothesis

that the relative growth rate has a linear relationship with the

inverse of time2 (which means that it decreases nonlinearly

with time):
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Schumacher function



Schumacher function



Schumacher function

◆ Integral form:

✓ where the A parameter is the assymptote and (t0,Y0) is the

initial value

✓ the k parameter is inversely related with the growth rate
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Lundqvist-Korf function

◆ Differential form:

✓ Lundqvist-Korf is a generalization of Schumacher function with

the following differential forms:
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Lundqvist-Korf function



Lundqvist-Korf function



Lundqvist-Korf function



Lundqvist-Korf function

◆ Integral form:

✓ The A parameter is the assymptote

✓ The k and m parameters are growth rate and shape

parameters:

 k is inversely related with the growth rate

m influences the age at which the inflexion point occurs
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Relationship between the functions of the 

Lundqvist-Korf type

◆ Lundqvist function

✓ Schumacher’s function is a specific case of Lundqvist function

for m=1



Theoretical growth functions

Richards type



Monomolecular function

◆ Differential form

✓ Assumes that the absolute growth rate is proportional to the

difference between the maximum yield (asymptote) and the

current yield:
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Monomolecular function

◆ Differential form

✓ Assumes that the absolute growth rate is proportional to the

difference between the maximum yield (asymptote) and the

current yield:

𝑑𝑌

𝑑𝑡
= 𝑘 𝐴 − 𝑌



Monomolecular function

◆ Differential form

✓ Assumes that the absolute growth rate is proportional to the

difference between the maximum yield (asymptote) and the

current yield:

𝑑𝑌

𝑑𝑡
= 𝑘 𝐴 − 𝑌



Monomolecular function

◆ Integral form:
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Logistic function

◆ Differential form:

✓ The logistic function is based on the hypothesis that the

relative growth rate is the result of the biotic potential k

reduced by the current yield or size mY (environmental

resistence):

✓ Relative growth rate is therefore a decreasing linear function

of the current yield
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Logistic function

◆ Integral form:

◆ The inflection point occurs at t=log(c)/k and Y=A/2, which

implies that the curve is symmetric around the inflection

point
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Generalized logistic functions

◆ Grosenbaugh (1965):

◆ Monserud (1984)

✓ where X is a vector of several variables
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Gompertz function

◆ Differential form:

✓ This function assumes that the relative growth rate is

proportional to the difference between the logarithms of the

maximum yield and current yield

✓ Which is equivalent to being inversely proportional to the

logarithm of the proportion of current yield to the maximum

yield
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Gompertz function

◆ Integral form:
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Richards function

◆ Differential form

✓ The absolute growth rate of biomass (or volume) is modeled as:

the anabolic rate (construction metabolism), proportional to the

photossintethicaly active area (expressed as an allometric

relationship with biomass)

the catabolic rate (destruction metabolism), proportional to

biomass

Anabolic rate

Catabolic rate

Potential growth rate

Growth rate

S – photossintethically active biomass ; Y – biomass; m – alometric coefficient;

c0,c1,c2,c3 – proportionality coefficients; c4 – eficacy coefficient
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Richards function

◆ The differential form of the Richards function follows:

YY
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Richards function

◆ Integral form:

✓ By integration and using the initial condition y(t0)=0, the

integral form of the Richards function is obtained:

with parameters m, c, k and A where:
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Relationship between the functions of the  

Richards type

◆ Richards function

✓ Monomolecular, logistic and Gompertz are specific cases of

Richards function dor the m parameter equal to 0, 2, →1



Theoretical growth functions

Hossfeld IV type



Hossfeld IV function

◆ The Hossfeld IV function is a sigmoid function, originally

proposed in 1822 (Zeide 1993), for the description of tree

growth:

◆ The function can also be obtained from the generalized

logistic by using f(X,t)=-klog(t). Consequently some authors

designate it as the log-logistic growth function
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McDill-Amateis / Hossfeld IV function

◆ Differential form:

✓ The variables considered in the development of the growth

function and the respective dimensions were:

where L indicates length, T is time and A is the asymptote

✓ Applying differential analysis to these variables, the following

differential form is obtained:

where k is a parameter related to the growth rate
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McDill-Amateis / Hossfeld IV function

◆ Integral form:

where (t0,Y0) is the initial condition and k expresses the growth

rate

✓ By making

the integral form of the McDill-Amateis function coincides with

the Hossfeld IV function
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(Zeide decomposition of growth functions)



Zeide decomposition of growth functions

◆ Zeide found out that all the growth functions can be

decomposed into two components:

✓ Growth expansion - represents the innate tendency towards

exponential multiplication and is associated with biotic

potential, photosynthetic activity, absorption of nutrients,

constructive metabolism, anabolism

✓ Growth decline - represents the constraints imposed by

external (competition, limited resources, respiration, and

stress) and internal (self-regulatory mechanisms and aging)

factors



Zeide decomposition of growth functions

◆ The decomposition can be achieved either by a subtraction

or a division (subtraction of logarithms) of the two effects

◆ All the equations analyzed by Zeide, except Weibull’s, are

particular cases of the two following forms:

◆ LTD

◆ TD

where p>0, q<0 and k=ek

◆ In both forms the expansion component is proportional to

ln(y) or, in the antilog form, is a power of size

◆ In LTD the decline component is proportional to the ln of

age while in TD it is proportional to age

qptyk'ytlnqylnpk'yln 1=++=

tqpeyk'ytqylnpk'yln 1=++=



Zeide decomposition of growth functions

◆ Zeide proposed a third form in which the declining

component is expressed as a function of size instead of age:

◆ The three forms are very useful for the direct modeling of

tree and/or stand growth – these forms provide some

assurance that the resulting model will display appropriate

behavior form a biological stand point
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Formulating growth functions without age explicit 



Formulating growth functions without age explicit 

◆ In many applications age is not known, e.g. in trees that do

not exhibit easy to measure growth rings or in uneven aged

stands

◆ For these cases it is useful to derive formulations of growth

functions in which age is not explicit

◆ The derivation of these formulations is obtained by

expressing t as a function of the variable and the parameters

and substituting it in the growth function writen for t+a

(Tomé et al. 2006)



Formulating growth functions without age explicit 

◆ Example with the Lundqvist function
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Simultaneous modeling of several individuals

(Families of growth functions)



Families of growth functions

◆ The fitting of a growth function to data from a permanent

plot is starightforward

Example:

✓ Fitting the Lundqvist function to basal area and doiminant

height growth data from a permanent plot
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Growth functions

0.0

10.0

20.0

30.0

40.0

50.0

0 5 10 15 20 25 30 35 40

Idade  (anos)

Á
r
e

a
 b

a
s

a
l 

(
m

2
h

a
-
1

)

0.0

10.0

20.0

30.0

40.0

50.0

0 5 10 15 20 25 30 35 40

Idade  (anos)

A
lt

u
r
a

 d
o

m
in

a
n

t
e

 (
m

)

Basal area

A = 58.46, k = 5.13, n = 0.81

Modelling efficiency = 0.995

Dominant height

A = 48.75, k = 4.30, n = 0.75

Modelling efficiency = 0.960



But how to model the growth of a series of plots? 
This is our objective when developing FG&Y models…

Those plots represent “families” of  curves



Using growth functions formulated as 

difference equations - ADA

◆ Algebraic difference approach (ADA)

✓ When formulating a growth function as a difference equation,

it is assumed that the curves belonging to the same “family”

differ just by one parameter - the free parameter

✓ A growth function with 3 parameters allows for 3 different

formulations, usually denoted by the free parameter

✓ For example for the Richards function:

Richards-A (model with site specific asymptote)

Richards-k (model with common asymptote)

Ricjards-m (model with common asymptote)



Using growth functions formulated as 

difference equations - ADA

Example with the Lundqvist function, formulation with

common asymptote and common n parameter, A as free

parameter (Kundqvist-A):

A specific curve of the family is defined by the value of the free parameter

In practice, the free parameter is a function of an initial condition (Y0,t0)
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Using growth functions formulated as 

difference equations - GADA

◆ Generalized algebraic difference approach (GADA)

✓ One of the problems with ADA is the fact that it originates

formulations that differ just by one parameter

✓ With GADA it is possible to obtain formulations that have more

than one site-specific parameter

✓ In GADA parameters are assumed to be function of an

unobservable set of variables (denoted by X) that expresse site

differences

✓ The equations is then solved by X, which, for a particular site,

is substituted in the original equation (X0)



Using growth functions formulated as 

difference equations - GADA

◆ Example with the Schumacher function 

Suppose that =X and =X, then

By substituting X0 into the previous expression, we get 
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Using growth functions formulated as 

difference equations - GADA

◆ Another example with the Schumacher function 

Suppose now that =X and =X, then

and

◆ Solving for X:

◆ Finnally, substituting X0 in the previous expression
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Expressing parameters as a function of 

tree/stand variables

◆ Example with the Lundqvist function fit to basal area growth

of eucalyptus (GLOBULUS 2.1 model) :
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Using mixed-models

◆ Mixed-models (linear and non-linear) “split” the model error

according to different sources of variation, such as:

✓ Region

✓ Stand

✓ Plots

✓ …

◆ When using a model fitted with mixed-models theory it is

possible to calibrate the parameters with random

components by measuring a small sample of individuals

◆ This means that it is possible to use specific parameters for

a particular tree/stand



Which is the best method to model 

“families” of growth functions? 

◆ There is no best method to model “families” of growth

functions

◆ If appropriate the three methods can be combined in order

to obtain more flexible growth models



The end !!!


