Growth functions




Summary

¢ Empirical versus biologically based growth functions

¢ Theoretical growth functions:
v Lundqvist-Korf type
v Richards type
v Hossfeld IV type
v Other growth functions

¢ (Zeide decomposition of growth functions)
¢ Formulating growth functions without age explicit

¢ Simultaneous modeling of several individuals
(Families of growth functions)

v' Growth functions formulated as difference equations - ADA, (GADA
and mixed models)




Growth functions

¢ The selection of functions - growth functions - appropriate to
model tree and stand growth is an essencial stage in the
development of growth models

v" Differencial form

dy
= _f(t
pradl

v" Integral form

y = [f(t)dt




Growth functions

¢ Growth functions must have a shape that is in accordance
with the principles of biological growth:

v The curve is limited by yield 0 at the start (t=0 ou t=t,) and by
a maximum yield at an advanced age (existence of assymptote)

v" the relative growth rate (variation of the x variable per unit of
time and unit of x) presents a maximum at a very early stage,
decreasing afterwards; in most cases, the maximum occurs
very early so that we can use decreasing functions to model
relative growth rate

v The slope of the curve increases in the initial stage and
decreases after a certain point in time (existence of an
inflexion point)




Growth functions

¢ Two types of functions have been used to model growth:

v' Empirical growth functions

- Relationship between the dependent variable - the one we want
to model - and the regressors according to some mathematical
function - e.g. linear, parabolic, without trying to identify the
causes or explaining the phenomenon

v" Analitical or functional growth functions

— Conceived in terms of the mechanism of the system, usually
having an underlying hypothesis associated with the cause or
function of the phenomenon described by the response variable

¢ The distinction between the two is not sharp and most modeling
applications contain both empiricism and mechanism in varying
mixtures




Theoretical growth functions

¢ Theoretical growth functions have commonly been developed in
their growth form - either absolute or relative growth - and the
respective yield form has been obtained by integration

¢ Generally this approach allows interpretation of the function
parameters and helps to impose restrictions on the values that the
parameters can take to be biologically consistent

¢ Theoretical growth functions are grouped according to their
functional form in:

v Lundgvist-Korf type
v Richards type

v Hossfeld IV type

v Other growth functions




Theoretical growth functions

Lundqvist-Korf type




Schumacher function

& Differential form:

v' The model proposed by Schumacher is based on the hypothesis
that the relative growth rate has a linear relationship with the
inverse of time? (which means that it decreases nonlinearly
with time):

e Y is the quantity of interest,
o Listime,

e kis a constant.




Schumacher function

Rearranging the equation to separate variables:

dy 1
R R
Y 2

Integrating both sides:

dY 1
[ L

The left side gives:
In|Y|= k/t‘2 dt

For the right side, the integral of £~ is:

ft‘zdt: 1 e
t

where C'is the integration constant. Therefore, the equation becomes:

k



Schumacher function

Exponentiate both sides to isolate Y':
&
Y(t)=e 170 =¢. e”
Let A = EG, a positive constant. Then, the solution is:

Y(t)=A-e ¢




Schumacher function

¢ Integral form:

A = Yyek/to

v where the A parameter is the assymptote and (t,,Y,) is the
initial value

v’ the k parameter is inversely related with the growth rate




Lundqgvist-Korf function

& Differential form:

v Lundqvist-Korf is a generalization of Schumacher function with
the following differential forms:

1dY_ m

Yde - oD

where:
» Y is the quantity of interest,
e {istime,

e k and m are constants.




Lundqgvist-Korf function

Step 1: Separate Variables
Rewriting the equation to separate the variables:

¥, m

Y ) tm—l—l dt




Lundqgvist-Korf function

Step 2: Integrate Both Sides

Integrate both sides to solve for Y:

g =k- m/t“im—” dt

The left side becomes:
In|Y|=k-m f ¢~ gt

The right side is integrated as follows:

/t_[m+1} dt — ft—l[m-l—lj dt — t—(m+1}—1 O 1 ™My
= = i it et

where C is the integration constant. Thus, the equation becomes:

1
ln|Y|:k-m(——-t_m) +C
m




Lundqgvist-Korf function

m|Y|=-k-t™+C

Step 3: Solve for Y

Exponentiate both sides to isolate Y :
Y(t) = et "0 = Okt "
let A = €€, a positive constant, to obtain the integral form:

Y(t)=A-e k"




Lundqgvist-Korf function

¢ Integral form:

v' The A parameter is the assymptote

v The k and m parameters are growth rate and shape
parameters:

- k is inversely related with the growth rate

- minfluences the age at which the inflexion point occurs




Lundgvist-Korf (a) Different asymptotes (b) Different k values
function (k=3; m=0.7) (A=90; m=0.5)

(c) Different m values (d) Different asymptotes and
(A=90; k=3) m values (k=3)

A=90

Age (yrs)




Lundqvist-Korf
function

Location of the
inflection point

Age of the inflection point
Age of the inflection point

Parameter m

Y at the inflection point
Y at the inflection point

1.0
Asymptote Parameter m




Relationship between the functions of the
Lundqvist-Korf type

¢ Lundqvist function

v' Schumacher’s function is a specific case of Lundqvist function
for m=1




Theoretical growth functions

Richards type




Monomolecular function

& Differential form

v' Assumes that the absolute growth rate is proportional to the
difference between the maximum yield (asymptote) and the

current y]eld: Step 2: Integrate Both Sides

Integrating both sides, we have:

A-Y

dt

g:k(A_Y) de :fkdt

The left side is integrated using the rule:

dY
fA_Y:—ln|A—Y|+Cl

where C'] is the integration constant. Thus,
~|A-Y|=kt+C,
Multiplying by —1:

In|A-Y|=—kt - C




Monomolecular function

& Differential form

v' Assumes that the absolute growth rate is proportional to the
difference between the maximum yield (asymptote) and the
current yield:

In|A-Y|=—kt—C
—_ = k(A — y) Exponentiating both sides to isolate A — Y

dt

|A . Y| — e—kt—C’L — e—kt . E—C'l
lete C1 = C, a positive constant, so we have:
A-Y =Ce™ or Y- A=Ce™

Since the absolute value can yield both positive and negative solutions, we consider the general

solution:
Y(t)=A— Ce ™

where C' is determined by initial conditions.




Monomolecular function

& Differential form

v' Assumes that the absolute growth rate is proportional to the
difference between the maximum yield (asymptote) and the
current yield:

Step 3: Determine C with Initial Condition

dY
= ka-Y)
dt If Y (0) = Y} (initial value), then:

Yo=A-Ce*'=4-C
C=A4-Y)
Thus, the final integral form of the solution is:

Y(t)=A— (A Yy)e ™




Monomolecular function

¢ Integral form:

Y =A (1—0 e‘“]

c=g"" (1—\&)
A

A- assymptote;
k - shape parameter, expressing growth intensity




Logistic function

& Differential form:

v The logistic function is based on the hypothesis that the
relative growth rate is the result of the biotic potential k
reduced by the current yield or size mY (environmental
resistence):

1dY

1dY _k_my
v ar = k-mY)

v Relative growth rate is therefore a decreasing linear function
of the current yield




Logistic function

¢ Integral form:

A

¢ The inflection point occurs at t=log(c)/k and Y=A/2, which
implies that the curve is symmetric around the inflection
point




Generalized logistic functions

¢ Grosenbaugh (1965):

A
(1+ C e—(k1t+k2t2+k3t3))

Y =

¢ Monserud (1984)

— A
¥ e e )

v where X is a vector of several variables




Gompertz function

& Differential form:

v' This function assumes that the relative growth rate is
proportional to the difference between the logarithms of the
maximum yield and current yield

1dy

_k(log A—logY
v (logA-logY)

v Which is equivalent to being inversely proportional to the
logarithm of the proportion of current yield to the maximum
yield




Gompertz function

¢ Integral form:

—c e—kt

Y=Ae

¢ =(log A-logY,) e ' = Iog(f‘




Richards function

& Differential form

v' The absolute growth rate of biomass (or volume) is modeled as:

— the anabolic rate (construction metabolism), proportional to the
photossintethicaly active area (expressed as an allometric
relationship with biomass)

— the catabolic rate (destruction metabolism), proportional to
biomass

Anabolic rate S = Cl(CoY " )= coy ™

Catabolic rate CsY

Potential growth rate AR

Growth rate C4(02Y " CSY)

S - photossintethically active biomass ; Y - biomass; m - alometric coefficient;
c0,c1,c2,c3 - proportionality coefficients; c4 - eficacy coefficient




Richards function

& The differential form of the Richards function follows:

dy

—=nYM—pY
ol /4




Richards function

¢ Integral form:

v By integration and using the initial condition y(t,)=0, the
integral form of the Richards function is obtained:

1

Y :A(l—ce"“)ﬁ

. . C= e_( _m)7 lo _ e—kto
with parameters m, ¢, k and A where:




Richards (a) Different asymptotes (b) Different k values
function (k=0.05; m=0.2) (A=90: m=0.02)

(c) Different m values (d) Different asymptotes and
(A=90; k=0.05) k values (m=0.02)

A=90




Richards
function

Location of the
inflection
point

Age of the inflection point
Age of the inflection point

Parameter m Parameter k

- - o]
[o=] ] o =

=

Y at the inflection point
Y at the inflection point

0.2 0.4
Asymptote Parameter m




Relationship between the functions of the
Richards type

& Richards function

v Monomolecular, logistic and Gompertz are specific cases of
Richards function dor the m parameter equal to 0, 2, —1




Theoretical growth functions

Hossfeld IV type




Hossfeld IV function

¢ The Hossfeld IV function is a sigmoid function, originally
proposed in 1822 (Zeide 1993), for the description of tree
growth:
k k k
t AL AL

Y = =
Ac +t¥ c +tK

Tc+tf/A

¢ The function can also be obtained from the generalized
logistic by using f(X,t)=-klog(t). Consequently some authors
designate it as the log-logistic growth function




McDill-Amateis / Hossfeld IV function

& Differential form:

v' The variables considered in the development of the growth
function and the respective dimensions were:

Variable dY/dt t Y A

Dimension LT T L L

where L indicates length, T is time and A is the asymptote

v Applying differential analysis to these variables, the following
differential form is obtained:

dv _ kiil_ij
gttt A

where k is a parameter related to the growth rate




McDill-Amateis / Hossfeld IV function

¢ Integral form:

where (t,,Y,) is the initial condition and k expresses the growth
rate

v" By making

the integral form of the McDill-Amateis function coincides with
the Hossfeld IV function




Hossfeld IV
function

(a) Different asymptotes
(c,=0.2; k=1.2)

Age (yrs)

(c) Different k values
(A=90; ¢ =0.4)

(b) Different ¢, values
(A=90; k=0.4)

Age (yrs)

(d) Different asymptotes and
c, values (k=1.2)




Parameter ¢
Parameter k
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(Zeide decomposition of growth functions)




Zeide decomposition of growth functions

¢ Zeide found out that all the growth functions can be
decomposed into two components:

v' Growth expansion - represents the innate tendency towards
exponential multiplication and is associated with biotic
potential, photosynthetic activity, absorption of nutrients,
constructive metabolism, anabolism

v Growth decline - represents the constraints imposed by
external (competition, limited resources, respiration, and
stress) and internal (self-regulatory mechanisms and aging)
factors




Zeide decomposition of growth functions

¢ The decomposition can be achieved either by a subtraction
or a division (subtraction of logarithms) of the two effects

¢ All the equations analyzed by Zeide, except Weibull’s, are
particular cases of the two following forms:

& LTD Iny'=k+plny+gint & y' =k, yPt
¢ 1D Iny'=k+plny +qt < y' =k, yPed!
where p>0, g<0 and k=ek

¢ In both forms the expansion component is proportional to
In(y) or, in the antilog form, is a power of size

¢ In LTD the decline component is proportional to the ln of
age while in TD it is proportional to age




Zeide decomposition of growth functions

& /eide proposed a third form in which the declining
component is expressed as a function of size instead of age:

Iny'=k+plny +qy < y' =k, yPe?’

¢ The three forms are very useful for the direct modeling of
tree and/or stand growth - these forms provide some
assurance that the resulting model will display appropriate
behavior form a biological stand point




Formulating growth functions without age explicit




Formulating growth functions without age explicit

¢ In many applications age is not known, e.g. in trees that do
not exhibit easy to measure growth rings or in uneven aged
stands

¢ For these cases it is useful to derive formulations of growth
functions in which age is not explicit

¢ The derivation of these formulations is obtained by
expressing t as a function of the variable and the parameters
and substituting it in the growth function writen for t+a
(Tomé et al. 2006)




Formulating growth functions without age explicit

¢ Example with the Lundqyvist function

Y,=Ae

S el

yt/A)




Simultaneous modeling of several individuals

(Families of growth functions)




Families of growth functions

¢ The fitting of a growth function to data from a permanent
plot is starightforward

Example:

v' Fitting the Lundqvist function to basal area and doiminant
height growth data from a permanent plot

A - asymptote
k, n - shape parameters




Growth functions

Basal area Dominant height
A=58.46, k =5.13, n = 0.81 A =48.75,k =4.30,n = 0.75
Modelling efficiency = 0.995 Modelling efficiency = 0.960

50.0 50.0

40.0 40.0

30.0

20.0

Area basal (m?ha?)
Altura dominante (m)

10.0

L] L] L] L] L] L] L OIO 1 1 1 ] ]
10 15 20 25 30 35 40 20 25

Idade (anos) Idade (anos)




But how to model the growth of a series of plots?
This is our objective when developing FG&Y models...

Altura dominante (m)

e
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€
<

Idade (anos) Idade (anos)

Those plots represent “families” of curves




Using growth functions formulated as
difference equations - ADA

¢ Algebraic difference approach (ADA)

v When formulating a growth function as a difference equation,
it is assumed that the curves belonging to the same “family”
differ just by one parameter - the free parameter

v" A growth function with 3 parameters allows for 3 different
formulations, usually denoted by the free parameter

v For example for the Richards function:
Richards-A (model with site specific asymptote)

Richards-k (model with common asymptote)
Ricjards-m (model with common asymptote)




Using growth functions formulated as
difference equations - ADA

Example with the Lundqvist function, formulation with
common asymptote and common n parameter, A as free
parameter (Kundqvist-A):

1 1

o) {
Y,=Y,e ‘2 1) o yv=Yje

A specific curve of the family is defined by the value of the free parameter

In practice, the free parameter is a function of an initial condition (Y,,t,)




Using growth functions formulated as
difference equations - GADA

¢ Generalized algebraic difference approach (GADA)

v One of the problems with ADA is the fact that it originates
formulations that differ just by one parameter

v" With GADA it is possible to obtain formulations that have more
than one site-specific parameter

v In GADA parameters are assumed to be function of an
unobservable set of variables (denoted by X) that expresse site
differences

v' The equations is then solved by X, which, for a particular site,
is substituted in the original equation (X)




Using growth functions formulated as
difference equations - GADA

¢ Example with the Schumacher function
n(Y)=a +§
Suppose that a=X and B=yX, then

X =M :In(YO)
'n(Y)=X+T - X Lyt = %o 1+y/tg

By substituting X0 into the previous expression, we get

in(Y)=In(vg) 0=

(t




Using growth functions formulated as
difference equations - GADA

¢ Another example with the Schumacher function

Suppose now that a=X and =X, then
in(Y)=x-P and |n(Y)=a—§ — 2 In(Y):( —Ej—k(a——j

t t t

¢ Solving for X:

et alss -y, _tlntio)-al-p

¢ Finnally, substituting X0 in the previous expression

In(Y):a_%‘F%PH(YO)_G—I—%}




Expressing parameters as a function of
tree/stand variables

¢ Example with the Lundqvist function fit to basal area growth
of eucalyptus (GLOBULUS 2.1 model) :

jmg

Ag = AgoS®

Npl : 100
Kq =Kgo +KqoS +Kgnp ===+ Kgife  with fe =
g — "g0 " "gQ 9NP 1000 S /Npl

mg = mgo + mgQ In(S)+ mng m




Using mixed-models

¢ Mixed-models (linear and non-linear) “split” the model error
according to different sources of variation, such as:

v Region
v" Stand

v" Plots
V..

¢ When using a model fitted with mixed-models theory it is
possible to calibrate the parameters with random
components by measuring a small sample of individuals

¢ This means that it is possible to use specific parameters for
a particular tree/stand




Which is the best method to model
“families” of growth functions?

¢ There is no best method to model “families” of growth
functions

¢ If appropriate the three methods can be combined in order
to obtain more flexible growth models




The end !!!




