
Growth functions



Summary

◆ Empirical versus biologically based growth functions

◆ Theoretical growth functions:

✓ Lundqvist-Korf type

✓ Richards type

✓ Hossfeld IV type

✓ Other growth functions

◆ (Zeide decomposition of growth functions)

◆ Formulating growth functions without age explicit

◆ Simultaneous modeling of several individuals

(Families of growth functions)

✓ Growth functions formulated as difference equations - ADA, (GADA

and mixed models)



Growth functions

◆ The selection of functions – growth functions - appropriate to

model tree and stand growth is an essencial stage in the

development of growth models

✓ Differencial form

✓ Integral form
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Growth functions

◆ Growth functions must have a shape that is in accordance

with the principles of biological growth:

✓ The curve is limited by yield 0 at the start (t=0 ou t=t0) and by

a maximum yield at an advanced age (existence of assymptote)

✓ the relative growth rate (variation of the x variable per unit of

time and unit of x) presents a maximum at a very early stage,

decreasing afterwards; in most cases, the maximum occurs

very early so that we can use decreasing functions to model

relative growth rate

✓ The slope of the curve increases in the initial stage and

decreases after a certain point in time (existence of an

inflexion point)



Growth functions

◆ Two types of functions have been used to model growth:

✓ Empirical growth functions

Relationship between the dependent variable – the one we want

to model – and the regressors according to some mathematical

function – e.g. linear, parabolic, without trying to identify the

causes or explaining the phenomenon

✓ Analitical or functional growth functions

Conceived in terms of the mechanism of the system, usually

having an underlying hypothesis associated with the cause or

function of the phenomenon described by the response variable

◆ The distinction between the two is not sharp and most modeling

applications contain both empiricism and mechanism in varying

mixtures



Theoretical growth functions

◆ Theoretical growth functions have commonly been developed in

their growth form – either absolute or relative growth – and the

respective yield form has been obtained by integration

◆ Generally this approach allows interpretation of the function

parameters and helps to impose restrictions on the values that the

parameters can take to be biologically consistent

◆ Theoretical growth functions are grouped according to their

functional form in:

✓ Lundqvist-Korf type

✓ Richards type

✓ Hossfeld IV type

✓ Other growth functions



Theoretical growth functions

Lundqvist-Korf type



Schumacher function

◆ Differential form:

✓ The model proposed by Schumacher is based on the hypothesis

that the relative growth rate has a linear relationship with the

inverse of time2 (which means that it decreases nonlinearly

with time):
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Schumacher function



Schumacher function



Schumacher function

◆ Integral form:

✓ where the A parameter is the assymptote and (t0,Y0) is the

initial value

✓ the k parameter is inversely related with the growth rate
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Lundqvist-Korf function

◆ Differential form:

✓ Lundqvist-Korf is a generalization of Schumacher function with

the following differential forms:
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Lundqvist-Korf function



Lundqvist-Korf function

◆ Integral form:

✓ The A parameter is the assymptote

✓ The k and m parameters are growth rate and shape

parameters:

 k is inversely related with the growth rate

m influences the age at which the inflexion point occurs
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Lundqvist-Korf 

function
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Relationship between the functions of the 

Lundqvist-Korf type

◆ Lundqvist function

✓ Schumacher’s function is a specific case of Lundqvist function

for m=1



Theoretical growth functions

Richards type



Monomolecular function

◆ Differential form

✓ Assumes that the absolute growth rate is proportional to the

difference between the maximum yield (asymptote) and the

current yield:

𝑑𝑌

𝑑𝑡
= 𝑘 𝐴 − 𝑌



Monomolecular function

◆ Differential form

✓ Assumes that the absolute growth rate is proportional to the

difference between the maximum yield (asymptote) and the

current yield:

𝑑𝑌

𝑑𝑡
= 𝑘 𝐴 − 𝑌



Monomolecular function

◆ Differential form

✓ Assumes that the absolute growth rate is proportional to the

difference between the maximum yield (asymptote) and the

current yield:

𝑑𝑌

𝑑𝑡
= 𝑘 𝐴 − 𝑌



Monomolecular function

◆ Integral form:
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Logistic function

◆ Differential form:

✓ The logistic function is based on the hypothesis that the

relative growth rate is the result of the biotic potential k

reduced by the current yield or size mY (environmental

resistence):

✓ Relative growth rate is therefore a decreasing linear function

of the current yield
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Logistic function

◆ Integral form:

◆ The inflection point occurs at t=log(c)/k and Y=A/2, which

implies that the curve is symmetric around the inflection

point
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Generalized logistic functions

◆ Grosenbaugh (1965):

◆ Monserud (1984)

✓ where X is a vector of several variables
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Gompertz function

◆ Differential form:

✓ This function assumes that the relative growth rate is

proportional to the difference between the logarithms of the

maximum yield and current yield

✓ Which is equivalent to being inversely proportional to the

logarithm of the proportion of current yield to the maximum

yield
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Gompertz function

◆ Integral form:
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Richards function

◆ Differential form

✓ The absolute growth rate of biomass (or volume) is modeled as:

the anabolic rate (construction metabolism), proportional to the

photossintethicaly active area (expressed as an allometric

relationship with biomass)

the catabolic rate (destruction metabolism), proportional to

biomass

Anabolic rate

Catabolic rate

Potential growth rate

Growth rate

S – photossintethically active biomass ; Y – biomass; m – alometric coefficient;

c0,c1,c2,c3 – proportionality coefficients; c4 – eficacy coefficient
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Richards function

◆ The differential form of the Richards function follows:
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Richards function

◆ Integral form:

✓ By integration and using the initial condition y(t0)=0, the

integral form of the Richards function is obtained:

with parameters m, c, k and A where:
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Relationship between the functions of the  

Richards type

◆ Richards function

✓ Monomolecular, logistic and Gompertz are specific cases of

Richards function dor the m parameter equal to 0, 2, →1



Theoretical growth functions

Hossfeld IV type



Hossfeld IV function

◆ The Hossfeld IV function is a sigmoid function, originally

proposed in 1822 (Zeide 1993), for the description of tree

growth:

◆ The function can also be obtained from the generalized

logistic by using f(X,t)=-klog(t). Consequently some authors

designate it as the log-logistic growth function

k

k

k

k

k

k

tc

t
A

tAc

t
A

Atc

t
Y

+
=

+
=

+
=



McDill-Amateis / Hossfeld IV function

◆ Differential form:

✓ The variables considered in the development of the growth

function and the respective dimensions were:

where L indicates length, T is time and A is the asymptote

✓ Applying differential analysis to these variables, the following

differential form is obtained:

where k is a parameter related to the growth rate
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McDill-Amateis / Hossfeld IV function

◆ Integral form:

where (t0,Y0) is the initial condition and k expresses the growth

rate

✓ By making

the integral form of the McDill-Amateis function coincides with

the Hossfeld IV function
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(Zeide decomposition of growth functions)



Zeide decomposition of growth functions

◆ Zeide found out that all the growth functions can be

decomposed into two components:

✓ Growth expansion - represents the innate tendency towards

exponential multiplication and is associated with biotic

potential, photosynthetic activity, absorption of nutrients,

constructive metabolism, anabolism

✓ Growth decline - represents the constraints imposed by

external (competition, limited resources, respiration, and

stress) and internal (self-regulatory mechanisms and aging)

factors



Zeide decomposition of growth functions

◆ The decomposition can be achieved either by a subtraction

or a division (subtraction of logarithms) of the two effects

◆ All the equations analyzed by Zeide, except Weibull’s, are

particular cases of the two following forms:

◆ LTD

◆ TD

where p>0, q<0 and k=ek

◆ In both forms the expansion component is proportional to

ln(y) or, in the antilog form, is a power of size

◆ In LTD the decline component is proportional to the ln of

age while in TD it is proportional to age
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Zeide decomposition of growth functions

◆ Zeide proposed a third form in which the declining

component is expressed as a function of size instead of age:

◆ The three forms are very useful for the direct modeling of

tree and/or stand growth – these forms provide some

assurance that the resulting model will display appropriate

behavior form a biological stand point
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Formulating growth functions without age explicit 



Formulating growth functions without age explicit 

◆ In many applications age is not known, e.g. in trees that do

not exhibit easy to measure growth rings or in uneven aged

stands

◆ For these cases it is useful to derive formulations of growth

functions in which age is not explicit

◆ The derivation of these formulations is obtained by

expressing t as a function of the variable and the parameters

and substituting it in the growth function writen for t+a

(Tomé et al. 2006)



Formulating growth functions without age explicit 

◆ Example with the Lundqvist function
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Simultaneous modeling of several individuals

(Families of growth functions)



Families of growth functions

◆ The fitting of a growth function to data from a permanent

plot is starightforward

Example:

✓ Fitting the Lundqvist function to basal area and doiminant

height growth data from a permanent plot
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Growth functions
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But how to model the growth of a series of plots? 
This is our objective when developing FG&Y models…

Those plots represent “families” of  curves



Using growth functions formulated as 

difference equations - ADA

◆ Algebraic difference approach (ADA)

✓ When formulating a growth function as a difference equation,

it is assumed that the curves belonging to the same “family”

differ just by one parameter - the free parameter

✓ A growth function with 3 parameters allows for 3 different

formulations, usually denoted by the free parameter

✓ For example for the Richards function:

Richards-A (model with site specific asymptote)

Richards-k (model with common asymptote)

Ricjards-m (model with common asymptote)



Using growth functions formulated as 

difference equations - ADA

Example with the Lundqvist function, formulation with

common asymptote and common n parameter, A as free

parameter (Kundqvist-A):

A specific curve of the family is defined by the value of the free parameter

In practice, the free parameter is a function of an initial condition (Y0,t0)
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Using growth functions formulated as 

difference equations - GADA

◆ Generalized algebraic difference approach (GADA)

✓ One of the problems with ADA is the fact that it originates

formulations that differ just by one parameter

✓ With GADA it is possible to obtain formulations that have more

than one site-specific parameter

✓ In GADA parameters are assumed to be function of an

unobservable set of variables (denoted by X) that expresse site

differences

✓ The equations is then solved by X, which, for a particular site,

is substituted in the original equation (X0)



Using growth functions formulated as 

difference equations - GADA

◆ Example with the Schumacher function 

Suppose that =X and =X, then

By substituting X0 into the previous expression, we get 
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Using growth functions formulated as 

difference equations - GADA

◆ Another example with the Schumacher function 

Suppose now that =X and =X, then

and

◆ Solving for X:

◆ Finnally, substituting X0 in the previous expression
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Expressing parameters as a function of 

tree/stand variables

◆ Example with the Lundqvist function fit to basal area growth

of eucalyptus (GLOBULUS 2.1 model) :
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Using mixed-models

◆ Mixed-models (linear and non-linear) “split” the model error

according to different sources of variation, such as:

✓ Region

✓ Stand

✓ Plots

✓ …

◆ When using a model fitted with mixed-models theory it is

possible to calibrate the parameters with random

components by measuring a small sample of individuals

◆ This means that it is possible to use specific parameters for

a particular tree/stand



Which is the best method to model 

“families” of growth functions? 

◆ There is no best method to model “families” of growth

functions

◆ If appropriate the three methods can be combined in order

to obtain more flexible growth models



The end !!!


